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Abstract]he topological method for the reconstruction of  dynamics from time series [K.  Mischaikow et
al., Phys. Rev. Lett., 82 (1999), pp. 1144-1147]is reshaped to improve its range of applicability,
particularly in the presence of sparse data and strong expansion. The improvement is based on a
multivalued map representation of the data. However, unlike the previous approach, it is not required
that the representation has a continuous selector. Instead of a selector, a recently developed new
version of Conley index theory for multivalued maps [B. Batko, SIAMJ. Appl. Dyn. Syst., 16
(2017), pp. 1587-1617;B. Batko and M. Mrozek, SIAM J.  Appl. Dyn. Syst., 15 (2016), pp. 1143-
1162] is used in computations. The existence of a continuous, single valued generator of the relevant
dynamics is guaranteed in the vicinity of the graph of the multivalued map constructed from data.
Some numerical examples based on time series derived from the iteration of H’enon-type maps are
presented.
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1. IntroductiorfConceptual models for most physical systems are based on a continuum;
values of the states of a system are assumed to be real numbersAt the same time science is
increasingly becoming data driven and thus based on finite informatiohis suggests the need
for tools that seamlessly and systematically provide information about continuous structures
from finite data and accounts for the rapid rise in use of methods from topological data analysis
(TDA). However, not surprisingly, there are significant challenges associated with the sampling
or generation of data versus the necessary coverage from which to draw the appropriate
conclusions.In this paper we focus on this challenge in the context of nonlinear dynamics.

The fundamental work of Niyogi, Smale, and Weinberger [29] provides probabilistic guar-
antees that the correct homology groups have been computed, but is based on uniform sam-
pling of the manifold. For a nonlinear dynamical system one expects that the sampling is
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influenced by an underlying invariant measure that is rarely uniform with respect to the vol-
ume of the underlying phase spacef-urthermore, in practice one seldom knows the underlying
subset of phase space on which the dynamics of interest occurse.g., the invariant set. As a
consequence one must expect that in applications we will need to collect considerably more
data than a theoretical minimum would necessitate.

The predominant tool used by the TDA community to overcome the problem of lack of
knowledge of the topological space of interest is persistent homology that provides homological
information at all scales. There are two challenges associated with this approach. The first
is that persistent homology computations on large data sets can be prohibitively expensive
(there is extensive work being done to address this problem [9, 30, 17]) and, second, that the
development of a persistence theory of maps is in its early stages [10,11, 4]. An alternative
technique is to bin the data. This is the approach we adopt in this paper. In particular, we
assume that the data points are measured via coordinates and thus the binning in phase space
naturally takes the form of cubical sets. The advantage is that we can a priori choose the bins
so that the homological computations are feasible given time and memory constraints, and
almost tautologically the binning process is a data reduction technique.

Identification of the space is only part of the challenge of understanding dynamics; we
also need to capture the behavior of the nonlinear map that generates the dynamicsThough
an oversimplification, interesting dynamics is often driven by nonlinearities that exhibit sig-
nificant expansion. As is made explicit in [12] the amount of data needed to expect a correct
direct computation of the induced maps on homology is proportional to the magnitude of
the Lipschitz constant of the map. This will not be a surprise to anyone who has attempted
to construct explicit simplicial maps for nonlinear functions. The significance of the work
reported in this paper is that we can obtain reliable information about the dynamics without
directly identifying the map.

To explain the philosophy before becoming submerged in the technical details (precise
definitions and notation are provided in the following sections), consider a dynamical system
on the unit interval and assume that we have collected the data { (x, y) €[0, 1] x [0, 1] } as
indicated in Figure 1.1(a). We interpret these data as providing information about the graph
of a continuous map f: [0, 1] - [0, 1] and the question we ask is, can we extract information
about the dynamics generated by f ? The answer is yes. In fact, under minimal hypotheses we
can conclude that there are attractors that contain a fixed point within the intervals [0, %] and
[%, 1], and there exists an unstable invariant set, also containing a fixed point, in the interval
[%, g]. These results are obtained by building an upper semicontinuous acyclic multivalued
map F : [0, 1] ([0, 1] (see section 2) from the available data, applying to it a recently devel-
oped new version of Conley index theory for multivalued maps [2, 1] in order to identify isolat-
ing neighborhoods and index pairs, and then computing the associated Conley indices (see Def-
inition 2.2). The last point requires that we be able to compute an induced map on homology.

An outline for the strategy used to perform these identifications is as followsAs indicated
above we bin the data. Using intervals of length 1/4 to define the bins we obtain the blue
shaded regions shown in Figure 1.1(b)The blue regions are meant to provide a representation
F of the graph of the unknown function f. Of course, as presented this is impossible; the
domain of F is connected but the blue regions are not. One means of addressing this issue is
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(d) The graph of an upper semi- (e) The graph of map F: X (
continuous acyclic map F X in blue, and its vicinity for
X (X in blue. Isolating neigh- continuous maps sharing with F
borhood N marked by orange isolating neighborhood N and
line segment. the Conley index, in green.

Figure 1.1Construction of an upper semicontinuous acyclic multivalued map F covering points represent-
ing the data.

to expand the representation so that the graph of a continuous function can be included in the
representation, i.e., the representation admits a continuous selector. Techniques of this type
were successfully employed in [23However, they may easily fail. Applying the method of [23]
to the representation in Figure 1.1(b) leads to the representation in Figure 1.1(c). Actually,
this is a minimal expansion which admits continuous selectors satisfying f(%) = % However,
the resulting approximation of the dynamics is too crude: the combinatorial procedure for
finding isolation neighborhoods presented in [36, 37] fails to produce an isolating neighborhood
for the fixed point x = % On one hand, one can easily check that any other procedure
must fail in this case, because the identity map is among selectors. On the other hand,
using an even larger expansion that produces an outer approximation [20] and using methods
detailed in [7, 8], the desired isolating neighborhood and index pair can be recoverétbwever,
our experience is that applying this latter approach to complex time series data even for 2-
dimensional examples, often results in failure.
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Lest the reader think that this is a contrived example, consider the function f: [0, 1] -
[0, 1] given by f (x) = —nx 3+ (1 + n)x and observe that for n > 1 the points in Figure 1.1 are
consistent with data lying near the graph of f. The dynamics generated by f consists of stable
fixed points at 0 and 1, an unstable fixed point at 1/2, and connecting orbits from the unstable
fixed point to the stable fixed points. Furthermore, as n increases, the minimal Lipschitz
constant of f given by f 0(1/2) = 4% increases which results in the dynamics becoming more
pronounced. However, from the perspective of experimental or numerically derived data, we
expect the data points to cluster along the linesy=0andy =1, and thus the observed
discontinuity becomes more pronounced especially if one refines the binning. We take this
to be yet another suggestion that the direct approach of constructing a representation that
admits a continuous selector is not the ideal technique.

As indicated above, we draw conclusions about the continuous dynamics from induced
maps on homology via the Conley index. This suggests that to obtain motivation for an
alternative approach we consider the example from a purely homological perspectivonsider
a function f: [0, 1] - [0, 1] andits graph G :={ (x, ) €[0,1] 2 |y=f(x)}. Letm4:Gs -
[0, 1]and m: Gf - [0, 1] denote the projections from the graph to the domain and range of
f, respectively. Then 1 is a homeomorphism, 5. is invertible, and, on the level of homology,
fo=mop.m 1‘1 . Observe that if we replace & by the blue shaded regions shown in Figure 1.1(b)
then 1. is not invertible, but we still can deduce the correct map induced by F on homology.
This is because the preimage{;;1 takes on two values, but these values are mapped to the same
value under mo.. For a more complete discussion on this perspective see [16]. What should
be clear is that to apply this in general  we require a condition that forces m 2. to collapse
appropriate generators in the homology of the representation H:(F ).

With this in mind consider the blue region shown in Figure 1.1(d).In this case the fibers of
T4 are acyclic, thus m.. is invertible, and the question of how .. acts on generators is resolved.
Because we are interested in extracting dynamics, rather than considering the blue region to
be a fiber bundle over the phase space,we view it as the graph of an upper semicontinuous
acyclic multivalued map F : [0, 1] ([0, 1] and we use F to extract isolating neighborhoods,
index pairs, and, ultimately, the Conley index.

We note that in this simple 1-dimensional example, the choice of the blue line in Fig-
ure 1.1(d) is obvious. In higher dimensions there are a variety of means of attempting to
resolve the issue of controlling how m.. acts on generators from the preimage of 1. and the
identification of optimal methods remains an open question. In this paper we seek minimal
rectangular regions.

To be more specific we assume that our data consist of a finite set of points A C R 4 and
our understanding of the dynamics is to be derived from the mapg: A - K. We also assume
that we have chosen a scale § > 0 for the binning and that the bins take the form

[n46, (nq + 1)8] x [n 26, (n2 + 1)8] x - - x [n a6, (na + 1)4],
where ni € Z. More generally, we work with §-cuboids, sets of the form
(1) [n16, m48] x [n26, My8] x - - - x [ngd, My],

where (n1, Nos - - -, W), (m 1, My, ..., M) € Z%. An elementary cube is a cuboid where mi ~n; €
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{0,1}fori=1,2,...,d. We denote the set of all §-cuboids in R by Cg and the set of all
elementary §-cubes in R by K$.
For a bounded subset X C R? we introduce the following notation:

Ks(x) = [ {QEK{|1XnQ6=0}

and [
xXqs:= {(QEKY|conv(X)nQ6=0}

where conv (X) denotes the convex hull of X.
Returningtothe mapg: A - R 9 its sunflower enclosureis the multivalued map
Fss:Ks(A) (R ¢ defined by

Fss(x):=xg(K s(x) n A)qs CR".

We note that the map has nonempty values, because for x € K s(A) the set K s(x) n A6=J
even if x6€ A. We leave it to the reader to check that given { (x, g(x)) € [0, 1] x [0, 1] } as
shown in Figure 1.1(a), the graph of F, 5 is as shown in Figure 1.1(d).
Sunflower enclosures satisfy a variety of nice propertiesRecall (cf. [18]) thatF : X (R
is cubical if
(@) XCR " is a cubical set, i.e., it can be written as a finite union of elementary cubes;
(b) for any x € X the set F (x) is cubical;
(c) for any elementary cube Q = [n 16, M48] x - - - x [md, Mgé] in X, F | is constant, where
Q:= (n 16, Mm48) x - - - x (na6, Mg8) and (n i6 M;i§) ={n i}ifni=mi.
The following proposition follows from [14, Proposition 14.5].

d

Proposition 1.1.A sunflower enclosure is an upper semicontinuous cubical map.

When the values of the sunflower enclosure are contractible, then using algorithms devel-
oped in [36] and the formula from [1, Theorem 4.4] one can identify cubical isolating blocks,
cubical weak index pairs, and an index map associated with ng,(g (see [31]for more details).
In particular, a Conley index can be computed.

From the perspective of identifying dynamics the aforementioned computation should be
viewed as purely formal, e.g., in and of itself it does not guarantee that there is a continuous
map that generates dynamics that is compatible with the associated Conley indices.  The
majority of this paper is dedicated to guaranteeing that the formal computation does in
fact lead to the existence of alarge, but explicit, family of nonlinearities that are capable
of producing the observed dynamics. To state our goals more precisely we introduce the
following notation. LetF: X ( X. For simplicity of notation we identify F with its graph
{(x,y)EXxX|y€F (x)}. Usingthe max-norm on the product space X xX, let B(F, ) C
X x X denote the open set of points within ¢ of the graph of F (see Figure 1.1(e)). Following
[15] (cf., e.g., [14]) we say that a continuous single valued map f: X — X is a continuous
e-approximation (on the graph) of F : X ( X if f C B(F, ¢).

We denote the set of continuous e-approximations of F by a«(F ).

Our claim is that Conley index information computed for F : X ( X, an acyclic upper
semicontinous cubicalmap, is valid for the dynamics generated by any continuous function
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f€a ¢(F)forall e€ (0, ¢ ) sufficiently small. As the results described below indicate, our
approach provides explicit lower bounds on g.

We have, up to this point in the introduction, been rather circumspect about how the
Conley index provides information about nonlinear dynamics.  One of the more powerful
results is that it can be used to construct semiconjugacies to known dynamics. To be more
precise, given two continuous mapsf: X - Xando:Y - Y, f is semiconjugate to o if
there exists a continuous surjective map p : X - Y such that

x . x

Y Y

commutes. Semiconjugacies are of interest if the dynamics of ¢ is understood, as this implies
that the dynamics of f must be at least as complicated, i.e., one can deduce structure about
the dynamics of f from that of o.

In the context of the Conley theory, one begins with an index pairP=(P 1, P,) (see
section 2 for precise definitions). The homological Conley index is derived from a map
fps: Ho(P4/P 5, [P2]) — H «(P4/P 5, [P2]) that itself is derived from the action of fon the
pointed quotient space (P /P 5, [P2]). LetN=cl(P 1!P ;). The metaform of the desired
theorem is that given the homological Conley index, information about the index pair, and
an explicit dynamical systemo: Y — Y, then there exists a semiconjugacy

INV(N, f) —— Inv(N, f)
pl lp
Y — ——Y

where Inv(N, ) denotes the maximal invariant set in N under f .

The potential of the proposed theory in applications is demonstrated in [3], in particular
in examples based on the time series studied in [23]In this paper we will prove the following
three results.

Theorem 1.2.Consider the time series  x = (x i)2°68 generated by iterating the Henon map
H:R23(x,y) 7~ (1 —ax?+by, x) ER?
with the parameter values a = 1.65, b = 0.1, and initial condition (x ¢ Yo) = (0, 0). Set
Ag:={(x i»X41)|1=100,..., 20,688 }

andletgx: Ax — R2 begivenby g s(xis Xiwq ) = (x s+ Xis2 )
Choose a binning of R 2 based on 6 := 0.008127 and let F := F 0.5  Ks(Ax) (R 2 be the
sunflower enclosure of g %, i.e.,

Fg s(x) :=xg (K s(x) n Ax)qs C R%
Let e = §/2.
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Figure 1.2.Domain of sunflower enclosure forg 5 consisting of 1184 2-dimensional cubes, an isolating
neighborhood (in dark sea green), its weak index pair (in blue violet), and the graph of  transitions between
components of an isolating neighborhood.

Then, a ((F ) 6= &. Furthermore, there exists a compact set N C R 2 (see Figure 1.2) such
that forany f€a (F)
(i) N is an isolating neighborhood of f ;

(ii) there exists a semiconjugacy ®  f : Inv(N,f) — £ a onto the subshift of finite type on
six symbols with the transition matrix

( |

OO ~00O0
- 2 OO0 OO0
- OO O OoOOo
OO OO -~0
OO O -~0O0
O OO OO -

such that for every periodica € a there exists a periodic point of fin 6 (q).
In particular, f has positive topological  entropy on Inv(N, f).
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Ns N,

Figure 1.3.Domain of sunflower enclosure for g 5 consisting of 1029 3-dimensional cubes, an isolating
neighborhood (in dark cyan), its weak index pair (in orange), and the graph of transitions between components
of an isolating neighborhood.

Note that in the above theorem, as well as in the oncoming theorems, we use a Henon map
with parameter values randomly selected from the set of values for which the system is chaotic.

Theorem 1.3. Consider the time series  x = (x i)l-1=4100000 generated by iterating the delayed
H’enon map
H:R33(x,y,2)7- (1 -ax2+bz,x,y) ER 3

with the parameter values a = 1.65, b = 0.1, and initial point (x o Yo» Zg) = (0, 0, 0). Set
A)T :={(X ir Xigq ’Xl'+2) | i= 100, ey 13,998}

andletg z: Ax - R3 begivenbyg X(xi>Xiuq 0 Xje2 ) = (X 15 Xje2 > Xj43 ).

Choose a binning of R 3 based on § := 0.035256 and let F := F 5)?,5 :Ks(Ax) (R 3 bethe
sunflower enclosure of g x.

Let e = 6/2.

Then, a ¢(F ) 6= &. Furthermore, there exists a compact set N C R 3 (see Figure 1.3) such
that forany f€a (F)
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(i) N is an isolating neighborhood of f ; and
(ii) there exists a semiconjugacy ® ¢ : Inv(N,f) — £ a onto the subshift of finite type on
five symbols with the transition matrix

( |

00010
0 00O01
A= 11000
00100
00100

such that for every periodica €T a there exists a periodic point of f in 6 f1 (a).
In particular, f has positive topological  entropy on Inv(N, f).

The next theorem shows that our approach can also be successfully applied in the case of
sparse data. Naturally, the dynamics that we capture is simpler than chaotic dynamics, but
we employ significantly less data.

Theorem 1.4.Consider the time series  x = (x )28 generated by iterating the H'enon map
H:R?3(x,y) 7> (1 —ax?+by, x) ER?
with the parameter values a = 1.65, b = 0.1, and initial condition

(x 0 Yo) = (0.891532, -0.346078).

Set
A)?:z{(X i’xi+1)|i=0,...,285}

andletg x:Ax - R? begivenby g x(xisXirq ) = (X i+1 > Xj+2 ).

Choose a binning of =~ R? based on § := 0.036 andlet F:=F , 5: Ks(Ax) (R 2 bethe
sunflower enclosure of g . Let e = §/2.

Then, a .(F ) 6= @.Furthermore, there exists a compact set N C R 3 (see Figure 1.4) such
that for any f€Ea  ¢(F ) the set N is an isolating neighborhood of fand f has a 2-periodic
point in Inv(N, f).

We run experiments relating to a periodic orbit for larger numbers of data points300, 500,
and 1000.In each case we obtained the same conclusion as in Theorem 1Fér attempts with
less than 286 points the construction of the multivalued representation failed: our algorithm
reported the existence of nonacyclic values of the enclosure.

A similar comment applies for Theorems 1.2 and 1.3.We verified that one can derive the
same conclusions using time series consisting of 25000 or 30000 elemen®¥e were unable to
go below 20689 points in Theorem 1.2. One can verify the conclusion of Theorem 1.3 using
time series with less than 14000 elements, however, we did not try to find the minimal length
of the time series.

Since, till now, we use data obtained by sampling the system whose generator is known,
we can compare the obtained results with the dynamics generated by the generator map it-
self. To this end, we use interval methods [28] to obtain a rigorous combinatorial enclosure of
the H enon map. Then we apply methods presented in [24]. In particular, we can prove the
following theorem.
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N,

Figure 1.4.Domain of sunflower enclosure forg 5 consisting of 106 2-dimensional cubes, an isolating
neighborhood (in dark sea green), its weak index pair (P 4 inyellow, P , in green), and the graph of transitions

between components of an isolating neighborhood.  Lower dimensional cubes are enlarged to 2-dimensional cubes.

Theorem 1.5.Consider the H enon map

H:R?3(x,y) 7> (1 —ax?+by, x) ER?

with the parameter values a = 1.65, b =0.1. Let N be given by Theorem 1.4. Then,
{(x,y) ER 2 | (y, x) €N } is an isolating neighborhood for H, isolating the 2-periodic or-
bit of H.

We note that in the presented examples the dynamics of the shift maps is expanding.
In particular, in Theorem 1.2 the Lipschitz constant of the shift map g x is estimated to be
3.70067,in Theorem 1.3 it is estimated to be 3.6327, and in Theorem 1.4 it is estimated to
be 3.43745.

Theorems 1.2-1.4 are only meant to illustrate the proposed methodn this paper we focus
on the theoretical results needed for the method. Severalquestions have to be addressed to
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make the method work in concrete problems.In particular, a question arises of how sensitive
these results are to the choice of 6, the length of the time series, or the choice of initial
condition. The fundamental feature of the Conley index is that it does not change under a
small perturbation of the generator of the dynamical systems. Thus, the question reduces
to the understanding of the stability of the multivalued map representation of the data. It

is natural to expect that by increasing the length of the time series or changing the initial
condition the semiconjugacy should be preserved as long as the same isolating neighborhood
is used. Experiments we run confirm this expectation. More delicate is the question how
the choice of § affects the results. On one hand, if 6 is very small, then the domain of
the multivalued representation becomes a collection of isolated cubes. Therefore, it cannot
properly approximate the phase space which is a continuum. On the other hand, if § is too
large, the multivalued representation gives a very coarse description of dynamics.Therefore,
one cannot expect that it will give an interesting description of dynamics. Thus, the optimum
is somewhere in the middle. Experiments we run show that small changes to § preserve the
results and moderate changes lead to a different matrix A but still let us claim the existence of
an invariant set with positive entropy. An interesting problem is to get the understanding of
changes in the results under varying § in the spirit of persistent homology.All these practical
questions are left for future investigations.

We now provide an outline for the paper. Section 2 provides basic definitions related to
the Conley index. Section 3 presents results about isolating neighborhoods in the context
of upper semicontinuous multivalued maps. Section 4 makes use ofthe results of section 3
to provide conditions under which continuous functions in a neighborhood of  the graph of
an upper semicontinuous multivalued map F with convex compact images inherit isolating
neighborhoods and their associated Conley index from F . Results of this form are essential.
The isolating neighborhood and Conley index computations in Theorems 1.2, 1.3, and 1.4
are done using the sunflower enclosure F ,but the results of interest concern the dynamics
generated by continuous functions in @ (F ).

The conclusions of Theorems 1.2 and 1.3 involve the existence of a semiconjugacy. As
indicated above this is done via the Conley indexBecause we work with upper semicontinuous
multivalued maps that need not admit a continuous selector, we need to work with weak index
pairs. The classical result of Szymczak [34, 35, 36] that proves the existence of a semiconjugacy
onto symbolic dynamics is based on a stronger definition of an index pair and therefore cannot
be applied directly. Section 9 presents theorems that are an extension of Szymczak’s results.
Sections 6-8 provide the necessary background to prove the results of section 9.

The fact that Theorems 1.2 and 1.3 contain explicit bounds on the class of maps, e.g.,
a.(F ) with € = §/2 is important for the development of models. Section 5 provides explicit
information about the preservation of topological and dynamical properties for continuous
functions near F .

Finally, the proofs of Theorems 1.2, 1.3, and 1.4 are presented in section 10.

2. Preliminarieshroughout this paper by an interval in the set of integers Z we mean
the intersection of a closed interval in RwithZ. Forn>1letlI » :={1,2,...,n}and for
p>2letZ »:={0,1,...,p - 1}denote the additive topological group with addition modulo
p and discrete topology.
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Given a topological space X and a subset A C X, by int x A, clx A we denote the interior
of A in X and the closure of A in X, respectively. We omit the symbol of space if the space
is clear from the context.

Let X, Y be topological spaces. By F : X ( Y we denote a multivalued map, that is, a
mapF:X3x7- F(x) €P(Y), where P(Y) is the power setof Y. A multivalued map F is
upper semicontinuous if for any closed B C Y its large counterimage under F , that is, the set
F-1(B):={xEX|F (x) n B6=J}, is closed.

Throughout the paper we identify F with its graph, the set{(x, yY)EX x Y|y EF (x)}.

In the following, we are interested in multivalued self-maps, that is, multivalued maps of the
formF . X ( X.

LetIbe an interval in Zwith 0 €1. A single valued mapping ¢ : I —» X is a solution for F
through x € X if a(n + 1) € F (o(n)) for alln, n + 1 €I and o(0) = x (cf. [19, Definition 2.3]).
Given a subset N C X, the set

Inv(N, F):={x& N |30:Z - N a solution for F through x}

is called the invariant part of N. A compact subset N C X is an isolating neighborhood for F
if Inv(N, F)Cint N. A compact subset N C X is called an isolating block with respect to F
if

NnF(N)nF "(N)CintN.
Note that any isolating block is an isolating neighborhood. A compact setS C X is said to
be invariant with respectto Fif  S=Inv(S,F). Itis called an isolated invariant  set if it

admits an isolating neighborhood N for F such that S = Inv(N, F) (cf. [2, Definition 4.1,
Definition 4.3]).

By F -boundary of a given set AC X we mean bd r A :=clA n cl(F (A) | A).

Definition 2.1 (cf. [2, Definition 4.7]). Let N C X be an isolating neighborhood for F . A

pair P = (P 1, Py) of compact sets P 5 C P4 C N is called a weak index pair in N if
(@F(Pi)nNCPiforie{1,2}
(b)bd F Py CPy;
(c) Inv(N, F)Cint(P 1\P);
(dP1\P,r,CintN.

A set BC X is acyclic if it has the (co)homology of a point. The multivalued map
F : X (X is acyclic if it has acyclic values, that is, if for each x € X the set F (x) is acyclic.
Given a weak index pair P in an isolating neighborhood N C X for F we set

ITn@P):=(Tny1(P), Ty2(P)):=(P 1 U X\intN),P U (X\intN)).
Recall (cf., e.g., [2, 24]) that F p, the restriction of F to the domain P, is a multivalued map
of pairs, Fp: P(T n~(P); theinclusionip : P -~ T y(P)induces an isomorphism in the
Alexander-Spanier cohomology;and the index map I F, is defined as an endomorphism of
H*(p) given by

IFP :F; ° (1;)_1

The pair (H “(P), Ir, ) is a graded module equipped with an endomorphism. Applying the
Leray functor L (cf. [25, 2]) to (H"(P ), Ir, ) we obtain a graded module with its endomorphism
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which we call the Leray reduction of the Alexander—Spanier cohomology of a weak index pair
p.

Definition 2.2 (cf. [2, Definition 6.3]).  The graded module L(H “(P), Ir, ), that is, the
Leray reduction of the Alexander—Spanier cohomology of =~ a weak index pair P is called the

cohomological Conley index of Inv(N, F ) and denoted by C(Inv(N, F ), F ).

3. Dynamics of upper semicontinuouslreiZfsd) be a metric space. By B r(x) we
denote the open ball with the center in x € X and radius r > 0.  Closed balls will be denoted
by Br(x). ForagivenACX, B r(A) will stand for an open r-hull  of A, that is,

B,(A) = [ {B(a) |a EA}.

Let F: X ( X be an upper semicontinuous map. One can easily verify that (multivalued)
selections of F share with F its isolating neighborhood and a weak index pair.  We express
this observation here for further reference.

Proposition 3.1.Assume N is an isolating neighborhood for ~ an upper semicontinuous
F:X(X, P is a weak index pair for F in N , and G : X ( X is an upper semicon-
tinuous map such that G C F . Then N is an isolating neighborhood for G, and P is a weak
index pair for Gin N .

The aim of this section is to show that, to a certain extent, the reverse implications hold
true. To be precise, we have the following theorem.

Theorem 3.2.Let N be an isolating neighborhood with respect to an upper semicontinuous

map F : X ( X. There exists an € > 0 such that N is an isolating neighborhood with respect
to an arbitrary upper semicontinuous map G : X ( X with G C B(F, ¢).

We postpone its proof to the end of this section.

Lemma 3.3.Let AC X be a compact set and let {x n} C X be a sequence convergent to
x€X. Ifx, eB@A, 1)fornENthenxEA.

Proof. Suppose the contrary and consider anr > 0 such that B(x, ) nA=@. Observe
that, forlarge enoughn €N, we haved(xn,x) < 5. Moreover, there exists a sequence
r

{up}CAwithd(u n>Xn)< 1 forneN. However, d(xn, Un) 2 d(u n,x) = d(xn,x)2r - 5= 3,
a contradiction. [ ]

Lemma 3.4.Let F: X (X be upper semicontinuous and let N C X be compact. A
solutiont: Z - N for F through x € N exists provided for any n € N there exists a solution
o :[-n,n] - N through x.

Proof. Leto" :[-n, n] - N be a solution with respect to F through x. By induction we
construct a sequence of solutions T : [-n, n] -~ N for F through x such that
(p1) there exists a strictly increasing sequence {m} C N such thatt " (k) = lim p_e ™7 (k)
forany k€ [-n, n];
(P2)t "' Ct" forn=>1.
Definet? : [0] -~ Nbyputtingr °(0):=x. Clearly (p1) and (p2) hold.  Suppose 1"
has been constructed so that (p1) and (p2) hold. Denote 6” := ¢ ™» and take into account
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a subsequence such that the sequences 9”(n + 1) and 07 (-n - 1) converge tov, wE N ,
respectively. We define 7' :[-n—-1,n+ 1] - Nby

k), |kl<n,
T (k) = [ V, k=n+1,
w,k=-n-1.

It is straightforward to see that conditions (p1) and (p2) hold, andt™' (0)=x. It remains
to be verified thatt ™' is a solution for F . Sinced? is a solution for F , we have

(2) Pk +1)eF (0P(k), ke Z

Foranyke[-n—-1,n+1] the sequenceffﬁ(k) converges tot ™' (k). Because the graph
of F is closed (cf. [14, Proposition 14.4]), passing to the limitin (2) we havet "' (k+ 1) €
F (x™" (k). [

Proof of Theorem 3.2.  For contradiction suppose that for any m € N there exists an upper
semicontinuous Gn : X (X with G m CB(F, -)andsuchthatInv(N,G m)n bdN6=0.
Letxm €Inv(N,G m) n bd N. Passing to a subsequenceijf necessary,we may assume that
Xm convergestoanx&bdN. Letom : Z - NbeasolutionforG m throughx m. Fix
an integern €N, choose a subsequence m such that for any k € [-n, n] the sequence
Om, (k) is convergent, and definet" : [-n,n] — N by puttingt "(k) :=lim p_.c Om, (k) for
k€e[-n,n). We have (om,(k),om,(k+1))EG m, CB(F, ,,J—p). Using Lemma 3.3 we infer
that (t "(k), T "(k+ 1)) €EF, which meansthatt" :[-n, n] - N is a solution for F through
x. This, along with Lemma 3.4, yields the existence of a solutiont: Z - N for F through x.
However, x € bd N, a contradiction. [ |

4. s-Approximationk the following we consider the Cartesian product of normed spa-
ces as the normed space with the max-norm.

Following [15] (cf., e.g., [14]) we say that a continuous single valued map f: X - X is a
continuous e-approximation (on the graph) of F: X (X iffCB ¢(F ). We denote the set
of continuous e-approximations of F by a «(F ).

Theorem 4.1.Let Y be a normed space and let X C'Y be compact. Assume that F : X (
X is an upper semicontinuous map with convex and compact values, and N is an isolating
neighborhood with respectto F'. Then

(i) there existsane o > Osuchthat, foranyQ <e<e o» there is a continuous -

approximation f : X — X of F such that N is an isolating neighborhood with respect
tof,and C(Inv(N, F ), F) = C(Inv(N, f), f);
(i) if X is an absolute neighborhood retract (ANR) then there exists a § > O such that
for any continuous §-approximation g : X - Xof  Fwehave C(Inv(N,F),F) =
C(Inv(N, g), g)-
Proof. Take anegg > 0 as in Theorem 3.2 and 0 < e<e o. By [6, Theorem 1] there exists
a continuous e-approximation f: X -~ X of F.  We shall prove that f satisfies the assertions
(i) and (ii).
To this end, for A € [0, 1], we define Fx : X (X by

Fr(x) =Af (x) + (1 - )F (x), x EX.
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It follows from the upper semicontinuity of F and the continuity of fthat F 1 is upper semi-
continuous and it is straightforward to observe that F 2 has convex and compact values.

According to the construction of the e-approximation f of F in [6], for arbitrarily fixed x €
X there exists an x’ € B¢(x) such that f (x) €B «(F (x%) and F (x) C B «(F (x%). Therefore, for
any A € [0, 1], we have F(x) CB &(F (xo)), as B¢(F (xO)) is convex. Consequently, E C B (F).
Theorem 3.2 shows that N is an isolating neighborhood with respect to & for every A € [0, 1].
Therefore, by the continuation property of the Conley index (cf. [1, Theorem 6.1]), we have
C(Inv(N, F ), F)=C(Inv(N, f), f)-

Let an e > 0 be as above. By [14, Theorem 23.9] thereisa & (0,¢] such that for
anyf,g: X - X, the §-approximations of F, there exists a homotopy h: X x [0,1] - X
joining fand g, such that h(;, t) is an e-approximation of F, forall t& [0, 1]. Fix such a
§>0andconsiderf: X — X, aé&-approximation of F defined asin[6]. Letg: X - X
be an arbitrary §-approximation of F. Since§<e¢, by [15, Theorem 5.13] (cf.,, e.g., [14,
Theorem 23.9]) and Theorem 3.2, Inv(N, f) and Inv(N, g) are related by continuation; hence
C(Inv(N, g), g) = C(Inv(N, ), f).  This, along with property (i), completes the proof. [

5. s-Approximations of cubical mafis section we assume that X C R?is a closed
subset and F : X ( X is a multivalued cubical map (cf., e.g., [18]), a scale § > 0 responsible
for 5-cubes is fixed, and % stands for the max metric in R?. Forx& R“ by ox we denote the
unique elementary cube such that x € “a. For ¢ > 0 define maps Fe> F*: X ( X by

(3) Fe(x) = F ( Be(x)
and
(4) Fé(x):= Be(F (x)).

We refer to maps F: and F® as a horizontal and a vertical enclosure of F , respectively.
We begin with some auxiliary lemmas.

Lemma 5.1.Assume A 4, A, C X are cubical, € € (0, %6), andy € Ee(A 1) nBe (A,). Then,
there existsay €A, n Ay such that %(y, y % < 2e.

Proof. Fori=1,2lety: €A; be such that %(y,y) <e. Thenoy, N0, 6= andg CA;.
Lety’€o0,, no,,. Theny’€A;n A, and %(y, ) <%(y, y1) + %(y1 Y < 2. [

Lemma 5.2. Assume PC M C R d
p:PUM - B¢(P)U M induces an isomorphism in cohomology.

Proof. Consider the multivalued map G : EE(P )UM - M given by

are cubical gnd 0 < ¢ < %6. Then the inclusion

G(x) :=={y E M| %(x, y) = %(x, M )}.

This map has compact values and is upper semicontinuous (see [27, Lemma 1®ince G(x) =
{x}forxe M, we see that Gep =id pum . We will show that p-G is homotopic to id Be(P)UM -
One easily verifies that G(x) = B%(X,M) (x) n M. Let

Q:={QEK|QCM,Qn By (x) 6=}
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= S
and Q”:={Qn B:(x)| QEQ}) ThenG()= ~ queoQ’ Eagh Q° € Q"is a rectangle as
an intersection of rectangles. Hence it is convex. We claim that QU=gC Q6= @ For this end
it suffices to show that Q_? n Qg 6= for any Q?, Qg €Q’ Since QY 6=@,ie{1,2}, take
x; €QY. Thenx 1, X, € B¢(x), which means that %(x, X2) < 2e.  Since € < %6, this implies
that Q § N Q) 6= IThus, G(x) is star-shaped (cf. [18, Definition 2.82]), hence, acyclic.
ForA€ [0, 1] let
Ga(x) :={(1 = Nx +ly |y E G(x)}

S
and D(x) := AE[01] G, (x). Notethatif xeMthenG (x) =D(x) = {x}. Also if x&
B¢(P)UMthen D(x) C B:(P)U M. Therefore,
[0,1] x B:(PYUM)3 (A x) 7-— Ga(x)C Be(P)UM

is the requested homotopy between p > G and ids, (pyp - [ |
As a consequence of the previous lemma we have the following lemma.

Lemma 5.3.Assume ACR ¢
homotopy equivalent.

is a cubical set gndQ < ¢ < %6. Then A and B_g(A) are

Now we enumerate a few properties of the enclosures.

Lemma 5.4. The map F . has the following properties:
(V) IFACXthen F  ¢'(A)= Be(F ~1(A)).

(i) If F is upper semicontinuous then so is F e
iy If €< 18andF is upper semicontinuous then for any x there is y wit
(iii) If ;5 dFi ' i h € X there is y € X with
F (y) =F s(X).
(iv) Ife < 18 and F is upper semicontinuous and convex valued then so is F e
(v)Ife < 16 and F is upper semicontinuous and has contractible values then so does F -
(vi) Ife < 25 and F is an upper semicontinuous map with convex values then F ¢ admits a
continuous selection.
(vii) If A C X is a cubical set and F is upper semicontinuous then F ¢(A) = F (A) whenever
e < 16.
2

Proof. |n order to prove inclusion B:(F ~1(A)) CF 7 '(A)in (i) take anx € B:(F ~1(A))
and anx’€F-"(A) such thatx€ B¢(x%. ThenF (x) n A6=CO.TakeaycF (x’) n A. Then
YEF¢(x) and F ¢(x) n A 6= & which proves that x € F: ' (A). 3

In the reverse direction, take anxEF '(A), ayEF ¢(x) n A, and anx 0e B¢ (x) such
thaty €F (x 4. Itmeans thatF (x ) n A6= @ and £E F~1(A). Therefore x € B¢(F ~1(A)).

By (i), the large counterimage under F: of any closed set in its range is closedHence, E
is upper semicontinuous, and we have (ii).

In order to show (iii), fix x € X and consider the set

n_ . _ o
Ax):= QlQisacel,QNBe(x)6=2 -

Note tlﬂatA(x) 6= . Since ¢ < %6, for any Q, QO € A(x) we have Q n Q 6= @. Then

P:=  4epn Q6= andPis an elementary cube. Moreover, P is a face of every cube Q
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with Q €A(x). Then, foranyye P we have F (y)=F( B:(x))=F (x), asFis upper
semicontinuous.

Properties (iv) and (v) follow from (iii).

We shall prove (vi). To this end consider Fz : X (X given by

Fe(x) :=F (B ¢(x)), x EX.

It is easy to see, by the same reasoning as for F¢, that F, has nonempty convex and com-
pact values. Moreover, the large counterimage under F, of any single point in its range is
open, hence, F: is lower semicontinuous. Consequently,by Michael’s selection theorem (cf.,
e.g., [21]), there exists a continuous map f: X - X, a selection of F.. Clearly F, CF,,
hence, fis a continuous selection of F:, as desired.

In order to prove (vii) take a y € F:(A). Then there exist an x € A such that y € F:(x) and
an x’EB(x, ¢) such thaty € F (x 9. Then ox N 0x0 6= &, because %(x< 2¢ < §. It follows
that we can take an x °€ 0, n g0, By the upper semicontinuity of F we setF (x Y C F (x %.
Hence, y € F (X"J C F (ox) CF (A). The inclusion in the reverse direction is obvious. ]

Lemma 5.5.The map F ¢ has the following properties:
(YIfACXthenF  (A) = B.(F (A4)).
(i) If F is upper semicontinuous, then so is F

(iii) If F is convex valued then so is F £
(iv) Ife < %6 and a cubical map F has contractible values then so does F €.

(v) IfA C X is a cubical set and F is cubical then (F Y"YA)=F “Y(A)forany0<e <.
Proof. To prove (i) observe that

. [ ., [ -
F*(a) = F*(x) = B.(F (x))
XEA [ _XEA [ B 3
B.(y) = Be(y)= B:(F (A)).

XEA yeF (x) YEF (A)

&

Properties (ii) and (iii) are obvious.

Property (iv) is a consequence of Lemma 5.3.

In order to show inclusion F ~1(A) C (F °)™"(A)in (v)takex€F ~'(A). It means that
F(x) nA6=@ and F(x) n A6=J.Hence xE (F°) 1(A).

To prove the opposite inclusion take an x € (F )1 (A). Since F*(x) n A 6= &, there exist
ay€F ‘xX)nAanday “€F (x)suchthatye B.(y). We have o, N 0,0 6= & because
%(y,y)<e<65. Takey”E€0, no,. Theny”E0,0=cl'gy0 CF (x), because F is cubical.
Notice thaty € o y n A. Thus, Y’ €0, CA, because A is a cubical set. It follows that
F (x) n A 6= and x € F ' (A) which completes the proof. |

Horizontal enclosures preserve isolating neighborhoods and weak index pairsMore pre-
cisely, we have the following propositions.

Proposition 5.6. Assume F : X ( X is a cubical, upper semicontinuous multivalued map
and N is a cubical  isolating neighborhood for F.  Then, for any € < 8, we have Inv(N, F ) C
Be(Inv(N, F)). As a consequence, N is an isolating neighborhood for F .
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Proof. Take an arbitrary x o9 € Inv(N, F ¢) and considerx:Z - N, a solutionforF ¢ in
Nthrough x o. Letn € Z be fixed. We have x,+1 € F¢(xn). There exists an x) € N such
that F e(xn) =F (x 2) and %(xg, Xp)<e <46,  Therefore we can take an xPE€ay, n Oxo such
that %(x 90 Xn)<eand F (x 9)CF (x 93, as F is upper semicontinuous. We have x,+1 €
F (xg) ando x,,, CF(x 2), because F is cubical. Moreover, X% €F (x 2) CF(x % and
%(xﬂq Xn) < %(x e, Xn) <e. Since n € Z was arbitrarily fixed, we have constructed X%z LN,
a solution for F in N with %(x 2 Xn) <e. Inparticular, Xy € B¢(Inv(N, F)), showing that
Inv(N, F ¢) C Be(Inv(N, F)).

Since Inv(N,F) C intNand € < § the latter inclusion yields Inv(N,F &)
C Be(Inv(N, F))CintN. This completes the proof. |

Proposition 5.7. Assume F : X ( X is a cubical, upper semicontinuous multivalued map,
N is a cubical isolating neighborhood for F , P is a cubical ~weak index pair in N , and € < %6.

Then P is a weak index pair for F .

Proof. Properties (a) and (b) of Definition 2.1 are straightforward consequences of Lemma
5.4 (vii). B

By Theorem 5.6 we have Inv(N, F ¢) C Be(Inv(N, F))Cint(P 4 \P ), and property (c)
follows.

Property (d) is obvious. [

Note that, in general, F ¢ is not a cubical map. However, it inherits from F the following
property.

Lemma 5.8.IfF : X ( X is a cubical map and e < 16, then
(5) Fe(y) CF ¢(x) whenever ¢ x C 0.

Proof. Since ¢ < %6 and ox C 0y, for an arbitrary elementary cube o, condition onB. (v) 6=
@ implies o nB:(x) 6= @. Therefore, taking into account that F is cubical, we have

Fe(y) =F([B_s(y>>
F (2)
2EB(y)

F (‘o)
on B (y)6=0
C F (‘o)
0N B¢ (x)6=0

F(2)

ZEB (x)
F (Be(x))
=F s(X).

This completes the proof. [ |
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Proposition 5.9. Assume F : X ( X is a cubical, upper semicontinuous multivalued map
and N is a cubical  isolating neighborhood for F.  Then N is an isolating neighborhood for

(F¢)¢ forany e < %6.

Proof. For contradiction, suppose thatxo Ebd Nand x: Z - N is a solution for (F ¢)° in
N through x .

Letn€ Z be fixed. We have x,+1 € (F¢)(xn). There exists an x 2+1 € F(xn) with
%(h>Xn)<e< 38 Thenox,, N 0o 6=@andwe can take xpy; €0x,,, N . Since
Nis cubical andx,1 €N, weinferthato x,,, CN. Hence,X)l; €0x  N0w CN.
Similarly, X)3, €0y, 00w  CFe(xn), asxp,; €Fe(xn)and Fe(xn)is a cubical set. By
Lemma 5.8 we have E(xn) C F ¢(x2). This, along with x %, € Fe(xn) yields x %, € Fe(x%).
Since n € Z was arbitrarily fixed, we have defined x 0.7 . N , a solution with respectto F ¢
inN .

Note that x 806 bd N, because xy € bd N, Xgoe Ox,, and bd N is a cubical set. This
contradicts Proposition 5.6, and completes the proof. |

n+1

The following theorem is a counterpart of Theorem 4.1 for cubical maps.

Theorem 5.10.Assume that  F: X ( X is an upper semicontinuous cubical map with
contractible values and € < %6. Thena ((F) 6= . Moreover, if Nisa cubical isolating

neighborhood with respect to F then N is an isolating neighborhood with respect to arbitrary
f€a¢(F),and C(Inv(N, f), f) = C(Inv(N, F ), F).

Proof. The existence of an e-approximationf: X - Xof F follows from [15, Theo-
rem 5.12] (cf., e.g., [14, Theorem 23.8]).

Since F has contractible values then, by Lemma 5.4(v) and Lemma 5.5(iv), so does
(Fe)®. Moreover, by Proposition 5.9, N is an isolating neighborhood with respect to (F ).
Therefore we have a well-defined Conley index C(Inv(N, (F ¢)°), (Fe¢)°). Since, in addition
F C (F ¢)°, we infer that C(Inv(N, F ), F ) = C(Inv(N, (F  ¢)°), (Fe)®). Note thatiff: X - X
is an e-approximation of F, then we have fC (F ¢)°, and the identity C(Inv(N, f), f) =
C(Inv(N, (F &)%), (F:)%) follows. This completes the proof. [ |

A statement analogous to Proposition 5.7 for map F is not true, however, an approximate
version holds.

Theorem 5.11.Assume that  F : X ( X is an upper semicontinuous map with cubical
values satisfying (5), Pisa cubical weak index pair with respect to F in a cui)ical isolating

neighborhood N , and € < %6. Then B_g(p ) is a weak index pair for F € in B¢(N).

_ Proof. For the proof of property (a) in Definition 2.1 fix an i € {1, 2} and take an x €
B.(Pi)andayEF “(x) n B¢(N). Then, there exists an x” € P; such that %(x, x% < e and
by Lemma 5.1 there exists ay? € F (x) n Nsuch that %(y,y ) <2e<65. Thenox N 0y 6=
and we can take an x”’€ 0, N gy0 such that %(x, x”J <e. By (5) we have F (x?Y D F (x) and
since P is cubical, we have xX’€TC P ;. Similarly, %(y, y°) < 2¢ < § implies that there exists
ay”’€ 0, n 0,0 such that %(y, y§ <. Since F (x) and N are cubical and y°€ “gon F (x) n N,
we getoyo CF (x) n N. Therefore yOOEF (x) nNCF (x 03 n N. By property (a) of P, we
have y’E P;. Hence, y €B¢(Pi).
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In order to prove property (b) assume the contrary. Letx &€ bd r: Be(P4)\ Be(P5). It
means thatx € B¢(P4), x € cl(F “(B&(P+)) | Be(P4)), and x /€ B¢(P»). Take an x’ € P4 such
that %(x, x%) <e. Thenx’& P,, thatis x € P;\ P ,. Consider a sequence (x)neN such that
Xpn EF¢(B¢(Py))\ Be(Py)andxn — x. Itfollows that for every n € N we have x n € F®(un)
for some un € B¢(P4). Take aul € P; such that %(un-Ul) <ecandaz n EF (Lln) such that
%(x»Zn) <e. We havezn & P4, because otherwise x» € B¢(P4). By %(un,Ul) <e, we
can take u)’ € 0y, N 0yo. Since P is cubical, we have u’€ P4. Since F is cubical, we have

u% DF (un). Hence,zn €F (P4)\P 4. Without loss of generallty we may assume that
Zn -~ z€Ccl(F(P4)\P4). Since

%(z, xo) < %(z, X) + %(x, x 0) <2e <6,

we can find ZE 0 , N 0y0 N 0y with %(x, z) <e. We havezecl(F (P 1)\ P 1) n P4, because
‘e Ccl(F (P4)\P4)and oxo CP4. By property (b)of P, ZEP,_ It follows thatxE B:(P»),
a contradiction.

We shall prove that

(6) Inv(B:(N), F¥) C Be(Inv(N, F )).

Letx:Z -~ B:(N)be asolutionforF ° in B¢(N). Foreachxi € B:(N), we can choose an
x? € N such that %(x i» X%) < e. Since xp1 EF*(xi) = B¢(F (xi)), we can take azsq €F (xi)
such that %(z+1 > Xi+1 ) <&. We have a@; N0x; N0y0 6= J, because %(¥i) < € and %(xi> XO) <e&.
Since F has cubical values we getg, CF (x1) Foreach i€ Z choose ails 0z, N0y, N0y, By
(5) we get uwq €0,,, CF (xi)CF (ui). Since N is cubical and x! €N , we get U s Ox0 CN.
Thus, Ui € Inv(N, F ) and since %(x i» Ui) < %(x i» X)) <e, wegetxi € Bg(lnv(N,F)). This
proves (6).

Now, since Inv(N, F ) as an intersection of cubical sets is cubical and Inv(N, F) Cint P 1,
we have

B.(Inv(N, F))CintP 1 CP, Cint B:(Py).

And, since Inv(N, F ) n B, = @ and the sets are compact, we havB (Inv(N,F)) n B (Pg) =
Hence, InvB:(N), F¢) Cint( B:(P1) \ B&(P5)), which proves property (c).
In order to prove property (d) it suffices to show that

(7) Be(P1)\ Be(P2) CN,

because N C int B:(N'). Thus, assume that (7) is not true and take an x € B:(P1) | B:(P3)) |
N and choose an x ’ € P4 such that %(x, x%) <e. Thenx’ZP,. Letx €0, noyw. Since
P is cubical, we have x’€ 0,0 CP ;. We cannot have x"’E P, because then %(x, ¥§ < ¢
implies x € B¢(P,). Therefore, X’€ P, \ P, Cint N by property (d) applied to F and N .

We have ‘@ n N=O, because x£& N and Nis cubical.  Thus, X’&Nncl'ox CbdN, a
contradiction. [ |

For the sake of simplicity in the next theorem for A C X we put A ¢ .= B, (A) and
E(A) ==X \intA.
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Theorem 5.12.Let F, G : X ( X be acyclic upper semicontinuous multivalued maps such
that FC G. Assume that N C X is a cubical isolating neighborhood with respect to F , P is

a cubical weak index pairin N, N ¢ is an isolating neighborhood with respect to G,and P ¢ is
a weak index pair for Gin N €. Then the diagram

% F* % [ %
H*(P4, Py) «—— H*(PyUE(N), P  UE(N)) ——— H*(Py, Py)

T*

ar H*(p{ UE(N), P ; UE(N)) ar

[
* [ € w
H*(Pf, P§) «“— H*(PS UE(N ©), Py UE(N ©)) —— H"(P§, P§)
commutes and @ *, K*, A" are isomorphisms for 0 <g < 6.
Proof. Consider the following diagram

(P1> Py) ——— (P41 UE(N), P 2 UE(N)) «—— (P4, Py)

jx

« (P{ UE(N), P 5 UE(N)) ‘

IK

(P P§) — (P{ UE(N ), P UE(N ©)) " (P§, P5).

The above diagram commutes up to inclusion, thatis,Ac FC ke GeaandAcw =k°i1pcoaq.
Inclusions ir, tp¢, k induce isomorphisms in cohomology by excision.

Letalp; and A|p,ugv) be restrictions of a, A to appropriate sets, respectivelyBy Lemma 5.2,
inclusions a|p;: Pi »~ P{ and A| p,ugpy :Pi UE(N),~ P { UE(N) induce isomorphisms in
cohomology for i = 1, 2. Since the following diagram

P, - Py« (P4, Py)
jﬂflp2 £01|P1 ja
PE Pl (b5 P

commutes, the diagram

- «—— HYPy) «—— HI(Pq) «—— HI(P1, Py) «—— HI1(Py) «—r0

(al pz)ﬁ (alr, )ﬁ aﬁ (] p,)e" T

e HUPE) « HYPS) ¢ HIP, P) ¢ HI(PS)
also commutes. By Five Lemma, @* is an isomorphism. An analogous argument for pairs

(P41 UE(N),P  UE(N))and (P { UE(N),P 5 UE(N))proves thatA * is anisomorphism
too. |
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Theorem 5.13.Let F : X ( X be a cubical, upper semicontinuous multivalued map with
contractible values. Assume that N C X is a cubical isolating neighborhood with respect to

F, Pisacubical weakindexpairinN, gnd0Q<e¢< %6. Then a ¢(F ) 6= &, and every &-

approximation of F has N as an isolating neighborhood and R := B¢(P) n N as a weak index
pair. Moreover, index maps I g, andI;  are conjugate.

Proof. By Propositions 5.6 and 5.7, N is an isolating neighborhood for E and P is a weak
index pair for Fe in N . By Lemma 5.4, E is upper semicontinuous and has contractible values.
Moreover, F C F ¢, showing that index maps Ir, and Ir,, are conjugate. By Lemma 5.8 and
Theorem 5.11 applied for F: we infer that B:(N') is an isolating neighborhood for (F )¢ and
B¢(P) is a weak index pair for (F ¢)° in B:(N). Note that, by Lemma 5.5, (F¢)® is upper
semicontinuous and has contractible values. Therefore, Theorem 5.12 applied for maps F «
and (F¢)°, implies that index maps I r,, and I(Fs)fs‘g(p) are conjugate.

By Proposition 5.9, N is an isolating neighborhood for (F ¢)°. Hence, by [2, Lemma 5.1],
R is a weak index pair for (F ¢)° in N. The diagram

(R1-Ry) C0% (RyUEMN), R 2UEWN) < (R 1. Ry)

P s ;

i Py L prUEW), P S UE®N) <2 (P§. Pf)

in which inclusions a, !'r, and ip: are excisions,commutes. This, along with the fact that
pairs (R 1> Rz) and (P y U E(N), P , U E(N)) are associate, shows that index maps I,
and I (g, )¢, are conjugate.

Eventually we infer thatI r, and I(x.):, are conjugate.

The existence of an e-approximationf: X - Xof F follows from [15, Theorem 5.12]
(cf., e.g., [14, Theorem 23.8]). Observe that for an arbitrary e-approximation f: X — X of
F the inclusion fC (F  ¢)® holds. Therefore, index maps Iy, and I(p.)c, are conjugate, and
the conclusion follows. [ |

)Egg(P)

6. Index map and its iteratéroughout this section we assume that X is a locally
compact metrizable space and f: X — X is a discrete dynamical system.

For convenience we shall use the notion of associated pairs introduced in [3Namely, we
say that a pair of paracompact sets P’ = (P {, PJ) is associated with a weak index pair P with
respectto f, if

(@nypcp ’
(@2)P4\P,=pP/\P,
@3)f()cp ’

Note that if P is associated with a weak index pair P then the pair of  pairs (P, P 0) is
a weak index quadruple in the sense of [24]. Moreover, by (a2) the inclusioni ppo induces
an isomorphism in the Alexander-Spanier cohomology, and by (a3), we can consider the
restriction f ppo of fto the domain of P as a map of pairsf ppo:P - P 0

Clearly, the pair Tn (P ) is associated with P . Another pair associated with P is

SN(P):=(Sn1(P),Sn2(P)):=(P 1U(f(P1)\intN), P2 U (f(P1) \intN)).
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Observe that S v (P ) is the smallest pair associated with P , i.e., for any pair P ? associated
with P, we have Sy,i (P)CP 2 Indeed, for i = 1 the inclusion follows directly from (a1) and
(a3). Note that in order to show the inclusion S y2 (P ) =P U (f(P1)\intN)CP 20it suffices
to verify thatf (P 4)\intNCP 20, as P, C on by (a1). Suppose to the contrary that there
existsay € (f(P 1)\intN)\P J. Then, by (a3)and (a2), YEP {\P J=p ;1 P, However,
P,\P, CintN ; hencey € int N, a contradiction.

We have the commutative diagram

(Tn1 (P ), Tn2(P))

fp . ip
J1

Tpsp)

i
(P1 Py) 22 (Sna (P), Syz (P)) <221 (P4, Py)
J2
(P P)

inwhichip, ippo, Ipgpy, J1, and j2 are inclusions. Since any of the pairs in the diagram is
associated with P , each of the inclusions induces an isomorphism in cohomology.Hence, by
the commutativity of the diagram we obtainI f, =f ppo° (i ppo)~'. For reference we state
this observation as the following.

fppo ippo

Proposition 6.1. Let P be a weak index pair for f and let P 0 be a pair associated with P .
Then

(i) there is a well-defined map of pairsf  ppo:P3x7- f(x) EP %
(ii) the inclusioni ppo:P - P 0 induces an isomorphism in cohomology;

(i) I o =f ppoe(ippo) "

Proposition 6.2. Let M be an isolating neighborhood for f. For any n € N there exists an

open neighborhood U of Inv(M, f ) with cl U C M such that for any x € U we have
fYx)eintMfork€l n-

Proof. Since S is compact and fis continuous,  we can find an open set U D S with
clUCMsuchthatf(U)Uf 2U)U---Uf(U)CintM. m
The following proposition is straightforward.

Proposition 6.3. If N is an isolating neighborhood for f then for any k € N we have

(8) Inv(N, f) C Inv(N, £ ).

Although the converse inclusion is not valid in general, we have the following proposition.

Proposition 6.4. Let S be an isolated invariant set with respect to f . For any k € N there
exists an isolating neighborhood M of S such that

(9) Inv(M, ) =S = Inv(M, f  ©).
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Proof. Let N be an isolating neighborhood of S wgw respect tof. By Proposition 6.2
we can take an open neighborhood U of Ssuchthat _, fk (U)Cint N. LetMCUbe
an isolating neighborhood of S. We have S = Inv(M, f) C Inv(M, f k). To see the opposite
inclusion take an x € Inv(M, f k). Thenf ik x) e Inv(M, f k) forieZ. ButInv(M, f k) C

MCU, thereforefj(f ik (x))€int NforjeI k. Hence,x€ Inv(N,f)=S. |
Proposition 6.5. Let S be an isolated invariant set for f.  For any n € N there exist isolating
neighborhoods N C M of S and weak index pairs P and Q, respectively, in Nand M,  such

that foreach kel
(i) P is a weak index pair for S and f k;
(i) Q is associated with P with respect to f K
(iii) T n (P ) is associated with Q with respect to f .

Proof. Fix an arbitrary n € N and consider an isolating neighborhood M of S satisfying
(9). Take UCclUCM, an open neighborhood of S as in Proposition 6.2, and a compact
setNCUwithSCintN. Note that such an N is an isolating neighborhood for f ¥ for each
ke{1,2,...,n}. By [2, Theorem 4.12] we can find a weak index pair Q = (Q1> Q5) for fand
SinMsuchthatQ 4'\Q, CintN. Define the pair P := (P 1, P,) as the intersection

(10) P:=QnN.

According to [2, Lemma 5.1], P is a weak index pair for fin N. We shall prove that the pairs
P and Q satisfy assertions (i), (ii), and (iii).
First we prove that

(11) fXPycQforkel n

We argue by induction with respect to k. Sincefori =1,2wehaveP i CNCU, by
Proposition 6.2, we get f (Pi) C M. Therefore, f(Pi) C(Q i)nMCQi,asPi CQ;and Qi is
posmvely invariant with respectto fand M. Next, suppose that for some k € In 1 we have
f*(Pi) C Qi. By Proposition 6.2, f ¥*1 (Pi) C M. Consequently, f*' (Pi) C f(f *(Pi)) n M C
flQ i) n M C Q i. This completes the proof of (11).

We shall prove that P is a weak index pair with respect to each )* k& In. To this end fix
an arbitrary k€ {2, . . ., n} (recall that for k = 1 the assertion follows from [2, Lemma 5.1]).
Since P is a weak index pair in N C U with respect to f, we have P; \ P, CintN, as well
as Inv(N, f ¥) = Inv(V, f) Cint(P 1P ). This shows that P satisfies properties (c) and (d)
of Definition 2.1 of a weak index pair for f k. Since property (a) follows easily from (11), it
remains to verify property (b), thatis, bdsx(P1) CP 2- Suppose to the contrary that there
exists ay € bd fxk(P4)\P 2. Theny€P 1P, andy € cl(f "(P1) \ P 1). Consider a sequence
{yn} Cf ¥(P1) \ P4 convergent to y. Since y € P;1 P, Cint N, for sufficiently large n we have
Yn € int N. Consequently, y Efk(P1) NiNtNCf "(P1) n N, which according to the property
(a) of P yields y n € P4, a contradiction.

To prove (ii) observe that properties (a1) and (a2) are obvious and (a3) follows from (11).

We shall show (ii). Since NCM, by (10)itfollowsthatQCT n~(P), showing that
(a1) is satisfied. Condition (a2) is a direct consequence of (ii) and the factthatT ~(P)is
associated with P . It remains to verify property (a3). By (10) and the inclusion N C M it
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follows that Tm (Q) C T ~ (P ). This, along with the obvious inclusion f (Q) C T m (Q), implies
flQ)C T n(P), and completes the proof. [

Proposition 6.6. Let N C M be isolating neighborhoods of S. Assume that P is a weak
index pair in N with respectto eachf * k€I p» and Q is a weak index pair with respect to f in
M. Moreover, assume that Q is associated with P with respect to f koand T y (P ) is associated
with Q with respectto f.  Then

(12) Iy =17,

Proof. Fix an arbitrary k €I  p. Since Q is associated with P with respect to f k, by
Proposition 6.1 we have

*

(13) Tpx =(f po) = (ibg) "

Note that, for each k€I ,-1, we have the commutative diagram

Q1 Q) —r (P1> Py)

f
fﬂ \> lfp
fi i

(P1:Py) —— (T (P), Tn2 (P)) +—— (P1: Pp)

in which ip and irq are inclusions. Moreover, the inclusions p and irq induce isomorphisms
in cohomology, as excisions. Therefore, by the commutativity of the diagram and (13) we
obtain

Tppr = (FE7) o (ip")
=(fpa) = (ipg) "o (fp) o (ip) "
=If§ °pr.

Taking into account that the above equality is valid for an arbitrary k€1  ,-1, the assertion
follows by induction. [

Proposition 6.7. Assume N is an isolating neighborhood with respect to f and P is a weak
index pair for fin N.  Moreover, assume N = ”=1 N, where N ; are pairwise disjoint compact
subsets of N. Then, forany ICI ,,theunion ~ . N; =: N [ isan isolating neighborhood for
f,and Q ;=P n N 1 isaweakindex pair forfinN ;.

Proof. Clearly, N1 is compact. Since int N1 =N 1 n int N and N is an isolating neigh-
borhood for f, we have the inclusions Inv(N1, f)CInv(N,f)nN 1 CintNnN 1 =intN 1,
showing that N1 is an isolating neighborhood for f .

We shall verify that Q is a weak index pair in N1. It is obvious that Q » C Q4 are compact
subsets of N;. For the proof of condition (a) in Definition 2.1 observe thatf(Q i) n N1 C
f(Pi)nNCP i, hencef(Qi)nNr CP; nN; =Q i. Moreover, we have the inclusions
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Inv(N1,f) CintN 1 niInv(N,f) CintN 1 nint(P4'\P5) =int(Q 1'Q 3), showing that Q
satisfies condition (c). Next, observe thatQ4'Q,=(P 1\P)n Ny CintNn N 1 =intN 1,
which means that Q satisfies condition (d). We still need to show that Q satisfies property
(b). Suppose to the contrary that there existsayebd  ((Q1)\Q 2. ThenyeQ 1'Q,
andyecl(f (Q 1)\ Q 1). Thus we can take a sequence {yn} Cf(Q 1)\ Q 1 convergenttoy.
By the inclusionyeQ 1'Q, CintN 1, itfollows thaty » €int N for sufficiently large n.
Consequently, » € (Q 1) nint N1 Cf(Q 1) n N1, which according to the positive invariance
of Q4 with respectto fand N 1 yields y» € Qy, a contradiction. [ |
Proposition 6.8. Assume that N is an isolating neighborhood for f and P is a weak index

pairinN.  Moreover, gssume N=N U N,, where N ,, N, are compact disjoint subsets
of N. Let P' :=pnaN 4 let v : H"(P1) . H *(P') x H *(P?) be the inclusion, —and let
n:H*(P"YxH"(P? - H"(P")be the projection. Then

(14) Ig =melf, oL

Proof. By Proposition 6.7, N 1 is an isolating neighborhood for f, and P! is a weak index
pairin N '. Therefore, we have well-defined index maps If,, andIf,, associated with the
weak index pairs P! and P , respectively.

Consider the commutative diagram

(P Py) — " s (Tya (P), Tz (P)) < (1, Py)
ﬂ l }'
(PP 20 (Tn,4(P 1), T, o(P 1) 2 (P P))

inwhichi p, ip1, j, andkare inclusions. Recall thati p andip1 induce isomorphisms in
cohomology by the strong excision property.By the commutativity of the diagram we obtain
J*efpo(ip) V=fpio(ips) "' °J", showing that

(15) jtelp, =1p,, 00"
Consider the commutative diagram

(P4, Py)

(P, P}y —2 (P4, PU PP

in which k and A are inclusions. Note that A induces an isomorphism in cohomology as an
excision. Moreover, by the commutativity of the diagram, A * =j * ° k", showing that

(16) j*°(K$°()\*)_1)=idH*(P11,P21)'

Note thatk "= (A ") :H*(P") -~ H "(P") x H *(P?)is an inclusion. Thus, k"> (A *)™" =1
andj”" =m. Now, (14) follows from (15), which completes the proof. u
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7. Determining orbits via the avskproperty ofhe Conley indexet X be a
locally compact metrizable space, and let f: X - X be a discrete dynamical system. Recall
that forp > 2 we denote by Z , :={0, 1,..., p — 1} the topological group with the addition
modulo p and the discrete topology. We define the space X :=X xZ , with the product
topology, and dynamical systemsf, f X - X, by

(17) f:r X3(xi)7-- (fKx),i+1)e X

and

f1 X3(x0)7-- (f(x), )€ X,
respectively. Consider the homeomorphism

[:X3(xi)7-- (x,i+1)E X
and observe that we have

(18) f=fel=lef.
Given ACX, by A we shall denote the set A x Zp.

Proposition 7.1. If N is an isolating neighborhood for f then N is an isolating neighborhood
for both fandf.  Moreover, if P is a weak index pair for f in N then P is a weak index pair
in N for both fandf.

Proof. Consider the dynamical systemf. Clearly Nis compact. We shall verify that
Inv(N,f) Cint N. To this end consider x=(x,i) €lInv(N.f). Leto: Z - Xbea
solution for f passing through x, which is contained in N, thatis, o(0)= x, o(Z)C N,
ando(k+1)= f(o(k)forkeZ. Defineo: Z -~ Xbyo(k):=p( ok)forkeZ, where
p: X3 (x,i) 7- x € X denotes the projection. One can easily see that ¢ is a solution for f
throughxin N. Therefore,x €int N, as N is an isolating neighborhood for f. This shows
that x=(x,i)EiNtN x Z p =int N, and completes the proof.

The verification that P is a weak index pair for fand N is straightforward.

The proof for fis similar. u

Fori € Zp define the map
(19) Hi i X3x7- (x,i)€X x {i}.

The following proposition is straightforward.

Proposition 7.2. Assume that N is an isolating neighborhood for f, and P is a weak index
pairinN. Foranyi€ Z p theset N x {i} is an isolating neighborhood for f, and P x {i} is
a weak index pair in N % {i}. Moreover, o

IfP K ~H i OILPX{i} '

Proposition 7.3.Assume that N is an isolating neighborhood for f, and P is a weak index

pairin N. We have
=1 % _ -1 -1 %
(xPo Hi) oIy = (X 0 1fp) o (< o Hiv )

where x P\ - H*(X) » XP H(X).
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Proof. By Proposition 7.1 the pair _I;is a weak index pair with respectto f.  Therefore,
the restriction f 5 of f to the domain P is a map of pairs

]iﬁ :13 - T]\T(I;)
We claim that

(20) Ir =1, °I"

7 =

Indeed, note thatl-i 5 =ipl. Hence,[' = (i5)' =(i5)"' °!" and, by the second equality
in (18), we get

I =fpo(ip)
=(f 5) e(ip)"

=f 5ol iy
=f 5 (ip) " o

*

=] f- o]
_P
For i € Zp denote by I the restriction of I to the domain X x{i}, and observe that li°H i = p j+1 .
Hence, i °li = p 7, and we have
(21) (P Hy o 1" = (x By o (x By = < By o 1y = < B,
Therefore, according to (20), in order to complete the proof it suffices to verify that
(<P Hi) eI py = (x g I ) o (x 2g H7).

Since P is a union of pairwise disjoint sets P x {i}, we have the product decomposition of
H*(p)= X0 VH*(P x{i}). Similarly, H(Tg(P))= XP ) H*(Tn(P) x {i}), as the sets
Ty (P) x {i} are pairwise disjoint. According to the definition of f and Proposition 7.2, we
can consider the restriction f , ., of f to the domain P x {i} as a map of pairs

[ oy 1P x{i} - T n(P)x{i}.

Thus, we have
fr=x p-ifx

o *

L i=0 L P x{i} "
Similarly,
o -1
Ip = o tpxgi) -
Consequently,
—f* o jr 1
I, =fp° 15
-1
= xp1f* -1
= Tizo Lpxqip i=0 P x{i}
-1
_ . p-1 f=
=X i=0 fJ: x{i} Ip x{i}
— p-1
= X =0 Iﬁp x{i}
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Now, by Proposition 7.2, we obtain

1
X
=

xP=1y* o “1y* o xp-1
i=o Hi Iy, i=0 Hi i= I

I's =0 [y
=xg4 mwlbwd
= x I (I, 1Y)
= xP o XPH
which completes the proof. [ |

S
From now on we assume that N = _, Ni, where Ni are pairwise disjoint compact subsets
of N, Nis an isolating neighborhood with respect to f, and P is a weak index pair for fin
N.DenoteP' :=PnNi. LetpeNandleto:= (o o,---,%_1)eI§P.

(22) Io=xP w5 oI, ° g, »
where i : H*(P) - H*(P") are projections, and ti : H*(P') ~ H "(P ) are inclusions.
Consider the dynamical systemfon X given by (17). For oEIF set

-1
Ny = (N"fi X {1})
i=0
and let

(23) So = INV(N o f).

Proposition 7.4. Theset S , is an isolated invariant set for f_, N , is its isolating neighbor-
hood, and there exists a weak index pair R for fand S  such that

o -1 % — 1% o7 =
(24) Ioe oM = gk I
Moreover, 1 ;1 and I % are conjugate.

R

_ Proof. First note that, by Proposition 7.1, Nis an isolating neighborhood for f_ and
Pis aweak index pairin N . Clearly, Ny is a compact subset of N ; hence, according to
Proposition 6.7, N is an isolating neighborhood forf, and R := P n N, is a weak index pair
in No. Therefore, we have a well-defined index mapy], for f, associated with the weak index
pair R.

We shall prove that I, and I+ satisfy (24). To this end consider projections

T tH*(P x{i}) » H “(P* x {i})

and the inclusions i : H*(P* x {i}) = H *(P x {i})fork €I n and i€ Zp. One can observe
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that, foranyi € Z p, we have
Hi oMy =mk°H;

and
* £
Hie ri =tk°H;-

Using the above identities and Proposition 7.3 we obtain

Lo XPlpiy = Xgmg, o XM, o X2l oo Pl
= ><Iij=_01 g ° ><p 1If ° X?=_01 l°i+1 o’1;:1
= XPme, o XEMp, o X B e Ty
= x€=‘01 Ty, © X0 11f o x[_’=‘1p?+1 o 101 s i1
= x?=*017101_ o ><P 11'11 oIf—Eo xf’01 d. i+
= X2 (o omi) o Tp e X T
= ><p 1 (]Jl o Ty, i) If; o ><1:701—dl+1 o1
= xP 1IJ ° X? 0 na,—,i ° If_ﬁ ’ X?=’01 _di+1 Ji+1

Note that x ?z Ty, i is the projection of H * (P ) onto H™(R), and x 0 d
of H*(R) into H “(P ). Hence, applying Proposition 6.8 we get (24).
We shall prove that

i+1 Is the inclusion

i+1

(25) e i dul, = i, cIP
Note that fr °! =1 fr. Hence,(I")™" °fg = fz-(")"". Similarly, (") "+ (i3)" =
(i) 'o(1") ", asir c1=1°i r. We have
()" I =) e R )

=fro(") " e (ir)™

= fre (i) =0

=If ()"
Therefore, using (24) and (21), we obtain

Igo Xp1yl+1 =Ip—1o ><P1yl oIf—R
—_ -1 o -1 * [}

=187 Mg HL () eI,
—_ -1 o -1 * o — *y —1
=P xblpr, o lp o (1)

Now, by the reverse induction with respect to p and the fact that (1)~ s the identity, we
get (25). This shows thatI;iR and 19 are conjugate, and completes the proof. [
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We are ready to present the main theorems of this sectionlThey show that from the index
map for f, itself, we can extract information which is sufficient to justify the existence of an
orbit of f, passing through the components of N in a given order.

S L
Theorem 7.5.Assume that N = ;’=1 N;, where N ; are pairwise disjoint compact subsets of

N, N is an isolating neighborhood with respect to f, and P is a weak index pair for fin N . Let
pENandleto:=(0 ¢:---+G1)E 1%7. If the endomorphism I 4 given by (22) is not nilpotent
then there exists a trajectory 1 : Z — Inv( Ii’=_01 No,,f)forf,suchthatt (i +kp) EN o, for
i€l, ke zZ

Proof. By Proposition 7.4, So =Inv(N o,f) is an isolated invariant set for f. Thus, we
have a well-defined Conley index C(Sf) for S ¢ and f. Note that, by Proposition 7.4, there
exists a weak index pairRin Xfor fandS o, suchthatl, andI. satisfy (24). Since Iv is
not nilpotent, then sois I 7, . Consequently, C(So-f) 6= 0. By the Wazewski property of the
Conley index (cf. [25, Proposition 2.10]), it follows that S + 6= & According to definition (17)
of f, there exists anxE N ¢, such that (x, 0)ES ¢. Letn:Z - S o+ be a trajectory for fin
S through (x, 0). One easily verifies thatthent:=p-n, wherep: X3 (x,i)7- xEXiis
the projection, is a trajectory for f satisfying the assertion. |

For a given i € In define endomorphismg:H"*(P) -~ H"(P) by
(26) gi:=1f, °li°T;.

We are going to prove the following theorem which may be viewed as a counterpart of Theo-
rem 7.5 expressed in terms of compositions of endomorphismsig

Theorem 7.6.Assume that N = S ;,’:1 N;, where N ; are pairwise disjoint compact subsets
of N, N is an isolating neighborhood with respect tof, and P is a weak index pair for f

inN. LetpeN, leto:=(0 ¢---»G-1)EI £» and let endomorphisms g ; be given by (26).
If the compositiong 4, °*"*°g o, 1 is not nilpotent then there exists a trajectory T 7.

Inv(~ P No,, f) for f,such thatt (i +kp) EN o, fori€l , ke Z,
For its proof we need an auxiliary lemma. Consider the projections
r)] .
i X H'(P%) L H'(P)
i=0
and the inclusions

. U
mi H (P - X H* (P
i=0

Lethi: XV H*(p) . XP_TH*(P ) be given by
(27) hi:=Tgemier;.

Let Perm(Zp) and Cycle(Zp) C Perm(Z p) stand for the sets of all permutations and all cyclic
translations of Zp, respectively.
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Lemma 7.7.Assume I 4, g;, and h ; are given by (22), (26), and (27), respectively. ~ Then
(i)1 §=% secydle@p)(hoyg © Mo 1 )
(i) h 00°"'°h0 =Mmo,, *To, 4y °Y9o,°" " "°Yo, 4 Lo, °Ta, -

p-1 p p p
Proof. One can observe that

(28) I =30 'h,.
Since ho; ° ho, =0 wheneveri-j6=1,i,j € Zp, by (28) we have

L)

P — 0 s«
10 =2 sePerm(Z p) hUS(O) 95(p-1)

=2 sECycle(Z p) has(O) et h"s(p—n ’
which completes the proof of (i).
For the proof of (ii) first observe that, according to the definitions (22) and (26) of I « and
gi, respectively, we have the following representation of endomorphismsihgiven by (27):
(29) hg

— o o o o
wi =Moo Mo ° Yoy “loyy “Toy, -

It is straightforward to see that, for eachi €I n, we have
(30) 9o, °lg; °Tg;, °Myg, ° Mg, =go;-
Therefore, using (29), we obtain

hg °

0

o h - o 7'[ o O e+ e+ O o l o r .
g mo, Opt gao gap_1 T, 0,1

This completes the proof. [ |

Proof of Theorem 7.6.  According to Theorem 7.5 it suffices to show that 1 § is no’g{nilpo-
tent. For contradiction suppose that I Yis nilpotent and consider k € N such that I s =0.
Note that, by Lemma 7.7 and the fact thath o; ° hg, =0 fori -j6=1,i,j€ Zp, it follows that

k
.0

kp _ 0.
Ia = ZSECde(Zp) h“s(O) Is(p-1)

k
6eeso0

=2 s€Cycle(Z p) has(o) 95(p-1)
Hence, according to definition (27) of hi, for each s € Cycle(Zp) we have
(hoye ° Mo, ) =0

s(0) I5(p-1)

In particular, (h o, ° """ ° hoH )k = 0. Consequently, by Lemma 7.7(ii) and (30), we obtain
map—1 on0p71 O(go_oo...cgo_p71 )kolcp,1 oro_ :0’

p-1

which implies (go, ° """ ° 9o, )k =0, a contradiction. This completes the proof. [
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8. Determining periodic orbits via Lefschetz-type fixed point thieasiéreon-
tinue to deal with determining orbits passing through the disjoint components of an isolating
neighborhood in a prescribed fashion.Now we focus our attention on periodic orbits.

Throughout this section we use the notation introduced in the preceding section.

Let¢ ={¢ i} be an endomorphism of degree zero ofa graded vector space V={V i}.
Recall that ¢ is cglled a Leray endomorphism provided the quotient space V O:=v/N (),
where N (¢) := {¢"(0)| n=1,2,...}, isof afinitetype. For such a ¢ we define its
trace as a trace of an induced endomorphism ¢0 V0L VOie, tr(¢) := tr(¢ 0) and the
(generalized) Lefschetz number, by

X .
Ng) = (=) tr(g 1)
i=0
It is worth mentioning the case of endomorphisms ¢, y of graded vector spaces Vand W,
respectively, such that ¢ = hg and y = gh for some morphismsg:V - Wandh: W - V. |If
one of such endomorphisms is a Leray endomorphism then so is the other, and /§0¢= Ny k)
for all k € N (cf. [13], [26, Proposition 2]). It applies, in particular, if ¢ and y are conjugate,
that is, there exists an isomorphism g : V - W such that g¢ = yg.
The following proposition shows that the Lefschetz number of an index map is independent
of the choice of a weak index pair.
Proposition 8.1. Let S be an isolated invariant set for fand let P and R be arbitrary weak
index pairs for f and S. Then, for every k € N, if \(I ;(P ) is well defined, then so is \(I ;‘R )

and we have

(31) NIf,) =N f,).

Proof. By [2, Theorem 6.4] and its proof it follows that there exists a sequence I f, =
I, 1,....k =1 ¢, of endomorphisms,with the property that each two consecutive endo-
morphisms, I; and I;+1, are linked in the sense of [26, Proposition 2]. Hence, the assertion
follows. [

Proposition 8.2. For any weak index pair Q for P and S ; given by (23), if A(I 1) is well

defined then so is NI &) and we have
NLf) = NI 8)

_ Proof. By Proposition 6.4, S is an isolated invariant set with respect to both ~ fand

fP. Moreover, according to Proposition 6.5, we can take a pair P % which is a weak index
pair for each f", k€I, and S, and satisfies all the assumptions of Proposition 6.6. Then
Proposition 6.6 implies that

(32) NIf,) =N 7).
Since Q is a weak index pair for f? and So,and sois P’ by Proposition 8.1, we get

(33) Nif) = NI ).
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According to Proposition 7.4 we can take a weak index pair R for f_and S o, such that I and
I)?R are conjugate; hence,

(34) NIF )= NI 5).

Note that both P  and R are weak index pairs for f_and S o. Therefore, applying Proposi-
tion 8.1 once again, we have

(35) NI ;’—P =N 7).

Now, the assertion follows from (33), (32), (35), and (34). [

Note that f_" maps X x {i} C X into itself, foranyi €1I,. Therefore, the following
proposition is straightforward.

Proposition 8.3. Assume that, foragiveni€l ,, Kx{i}C X is an isolated invariant

set for fP in its isolating neighborhood M x {i}. Then K is an isolated invariant set for f P,
isolated by M .

Proposition 8.4. Letf: R ¢ _ RY be a discrete dynamical ~system. SgtR?:=RY x I, and
consider the dynamical system  fon RY given by (17). Assume that K := ‘i’=_01 (Ko; x{i}) C R?
is an isolated invariant  set with respect to fP, and M := _5’;01 (Mo, x {i}) is its isolating
neighborhood. Then, there exists a weak index pair Q for fP and K consisting of  compact

ANR’s (for the definition of an ANR we refer to [5]).

Proof. Fix an arbitrary i €1 p. First note thatK o, x {i} = Inv(M o, % {i}, f?), asf? maps
RY x {i}into itself. ~As a consequenceM, x {i}is an isolating neighborhood of K o, * {i}
with respect to f . By Proposition 8.3, K¢, is an isolated invariant set with respect to f, and
My, is its isolating neighborhood. Using [35, Lemma 5.1] we can take a polyhedral index pair
Q% forf? and Ko,. By [24, Theorem 4.4], Q°' is a weak index pair. Then the pair Q % * {i}
consists of compact ANRs, gﬁd constitutes a weak index pair for/? and Ko, x {i}._ One can
verify that the union Q := ?;01 Q% x {i} is a weak index pair with respectto  f? and K.
Moreover, Q1 and Q» are ANRs, as pairwise disjoint unions of ANRs. [ |

: . S
Theorem 8.5.Let f: R ¢ -, R be a discrete dynamical system.  Assume that N =~ ., Ni,
where N ; are pairwise disjoint compact subsets of N , is an isolating neighborhood with respect

to f, and P is a weak index pair for fin N . LetpEN,leto:=(0 ¢--->G-1) e 17", and let
endomorphism I  of X€=‘01 H*(P ) be given by (22). If
(36) A(TE) 6= 0

then there exists a p-periodic pointx EN for fsuchthatf kv (x)eN o, forke Z.

Proof. Consider the spaceﬁ{ =R *1Ip, and the dynamical systemfon Rﬁ,_given by
(17). By Proposition 8.2 we infer that S is an isolated invariant set with respect tof *. Thus,
according to Proposition 8.4, we can take Q, a weak index pair for f? and Sq, consisting of
compact ANRs. Then, by Proposition 8.2, /\(If_g) is well defined and we have /\(fg) =A({I %)
which, along with (36), yields

/\(I,c‘g) 6= 0.
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Note that any weak index pair is a proper pair in the sense of [33, Defnition 4]. Therefore,
by [33, Theorem 9], there exists an x € cl(Q 1 ' Q ») such that f§(x) = x. Without loss of
generality we may assume thatx = (x, 0) EN o, x {0}. Then, X € Ny, is a p-periodic point
forf. Clearly { f*(x) |[kEZ}CS o; hence,{f *(x) |[kEZ}CInv( ~ 2. No, f). Moreover,
definition (17) of fguar§ntees that the p-periodic trajectory of f through x passes through

the components of Inv( ?;01 Ng,, f) in a proper order. [

We shall express the Lefschetz number of § in terms of the Lefschetz number of a com-
position of endomorphisms g given by (26). Our goal is to prove the following theorem.

Theorem 8.6.Letf: R ¢ -, R be a discrete dynamical system.  Assume that N =~ ., Ny,
where N ; are pairwise disjoint compact subsets of N , is an isolating neighborhood with respect
tof. LetpEN, leta:=(0 ¢--->G-1)EI Zr and let P be a weak index pair for fin N .

Consider endomorphismsg ; : H*(P) - H (P ) given by (26). If
(37) Ngo, ©* " °9o,, ) 6=0
then there exists a p-periodic pointx €N, for fsuchthatf "k (x)E N o, for k€ Z.

For the proof we need an auxiliary lemma.

Lemma 8.7.Assumel 4, g;, and h ; are given by (22), (26), and (27), respectively. ~ Then
(@) if A(h o° " °h,_1)iswell defined then so is N(I %), and

A1) =pNh og°  *ha,);
(i) if (g oo ° " °Yo,, ) iswell defined then so is \(I %) and we have
/\(Ig) =p/\(g o ° """ Ogap—1 )-

Proof. Note thatI & and hp-q° ¢ hy are endomorphisms of graded moduleshowever,
we consciously skip denoting the dimension in order to simplify the notation. Observe that,
by Lemma 7.7(i) and the cyclic property of the trace, in each dimension we have the equality

(38) tr(I 5) =ptrth op°"""° hap_1 ).

This completes the proof of (i).
For the proof of (ii) it suffices to verify that, in each dimension, we have

tr(15)=ptr(g oo ° " °Jo, ;).
Using Lemma 7.7(ii), by the cyclic property of the trace, and (30), we can write

tl’(hoo°"'°hap71)=tl'(m o
=tr((g oo ° Y90,y )oto,y o,y Mo, °To, )

=tr(g o0 ° """ ° Yo, , )-

-1 Tlo, °(gf’oon'ogopf1 )°l‘7p—1 c>r%ﬂ)

Now, the assertion follows from (i). [
Proof of Theorem 8.6. The theorem follows from Theorem 8.5 and Lemma 8.7. [
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9. Semiconjugacies to shift dynaiBies a matrix A€ (0,1} """ we say thata
partial map s : Z9I n is A-admissible if A(s i>Si+q)=1foranyi,i+1&doms.

Assume Vis a finite-dimensional graded vector space over the field of rational numbers.
Let Vi CVfori €1 n be subspaces of V such that V=@, Vi is a direct sum decomposition
of Vand let

Di:V3x=(x 1Xp---%)7--(0,0,...0;x0...,0)€V

denote the canonical projections.

Consideralinearmap L : V - V. We define the transition matrix of L with respect to
the decomposition V= ® ., Vi as the matrix A € {0, 1} " *» such that A(i, j) = 1 if and only
if pj °L °p i 6= 0.We say that L is Lefschetz-complete if

/\(Lops1°L°P52°"'°L°Psk)6=0

for any sequence s : k — I, admissible with respect to the transition matrix of L.

Let n :={s:Z - I n}bethe space of bi-infinite sequences of elementsinIn with
product topology and for a matrix A € {0, 1} In*I'n et £ 4 denote the subspace of A-admissible
sequences.lt is easy to see that the shift mapo: Zn - Zn definedbyo(s) i :=s 41 isa
homeomorphism and o(24) C £ a. Hence, o is a generator of a dynamical system on 2a.

Theorem 9.1.Assume N is an isolating neighborhood with resgect to f: R? - RY and
P is a weak index pair for fin N . Moreover, gssume N = ;’=1 N;, where N ; are pairwise
disjoint compact subsets of N , and the indgx mapl ¢, :H*(P) - H"(P) is Lefschetz-complete
with respegt to the decomposition N = ?: ] N ;. Then there exists a semiconjugacy p between
S = Inv( 1’_’=1 N, ) and the shift dynamics con L~ a, where A is a transition matrix of I~ ¢, .
Moreover, for each periodics €Y a there exists a periodic pointof finp — ~1(s),

Rroof. Fix an arbitrary x € S. Since the sets N; are pairwise disjoint and S =
Inv( ?=1 Ni, f), for each k € Z there exists a unique i €I n with f k(x) € N i. By putting
p(x) k :=i we define a continuous mapp :S - £ n. Note that, in fact,p maps SintoZ a4, as
2 a is the subspace of 2, of all sequences admissible with respect to the transition matrix of
If, .

We shall prove that p is a surjectiononto £ a. Tothisendlets€Z a be fixed. Foran
arbitrary k€ N let s % denote the restriction of s to the domain {-k —-k+1,..., k-1, kL
Since I, is Lefschetz-complete, we have

Nfp °Ps ° L, °Psg° 21, °Ps,)6=0.
By the cyclic property of the trace we obtain
/\(pr °Ps oIfP °Ps o".oIfP opsoo.”oIfP opskq )6=0:

showing thatps, °If, °Ps., 6=0;hence,(s-k-Sk) is A-admissible. As a consequence,the
periodic sequencé” : Z - In, given byskm :=s fmﬂ() mod (2k+1)-k TOr mE Z, is A-admissible.

By Theorem 8.6, there exists xk € S such thatp(x «) = sk. Since k € N was arbitrarily fixed,
we have constructed a pair of sequences:{Sk} ez N convergenttos, and {x K} ES N such
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thatp(x k) = sk for ke N. By compactness of S, passing to a subsequenceif necessary,we
may assume that {xk } converges to x €S. Then, by the continuity of p we have p(x) =s.
The commutativity of the diagram

s_I .s

2A —5— 2A
is easily readable.

The above shows that p constitutes a semiconjugacy from fto the shift dynamics o on
2A.

The last statement of the theorem is a direct consequence of Theorem 8.6. [ |

Theorem 9.1 has its counterpart in terms of endomorphisms g given by (26).

Theorem 9.2. Assume N is an isolating neighborhood with resgect to f: R? - RY and
P is a weak index pair for fin N . Moreover, gssume N = " N;, where N ; are pairwise

disjoint compact subsets of N, and for each sequences: Ii —»111p admissible with respect to
the transition matrix A of the index map I fp tH*(P) - H*(P) the Compogtion g s, o0 0s,
is not nilpotent.  Then there exists a semiconjugacy p between S := Inv( . Ni, f)and the
shift dynamicsoon ¥ A-

Proof. The proof runs along the lines of the proof of Theorem 9.1. Therefore, the details
are left to the reader. However, it is worth mentioning that now the admissibility of the
periodic sequences® : Z _ I constructed in the proof of Theorem 9.1 follows from the fact
that the composition gs , °*""°ds,°" " °Js, is not nilpotent. Moreover, the existence of the
corresponding sequence {x} € SN is guaranteed by Theorem 7.6. |

10. Proofs of the main theorems.

10.1. Proof of Theorem 1.3Clearly, F is a cubical map. Its upper semicontinuity
follows from [14, Proposition 14.5]. Using elementary collapses (cf. [18]) we verify that F has
contractible values.

Using algorithms developed in [36], a formula from [1, Theorem 4.4], and techniques as
in [31], we find a cubical isolating block N for F consisting of five pairwise disjoint compact
components N, - - - » 5, a cubical weak index pair P in N, and index map E, (cf. Figure 1.3).
Direct computations show that H'(P 1, P,) = Z° and HY(P4, P») = 0 for q 6= 1. More precisely,
let&’, .. ., & be the generators of the cohomology group H'(P ) such that H '(P4, P;) = h& i,
where P' :=P nN i, fori=1,...,5. Then, using generators & ..., &as abasis, computations
based on algorithms of [22] provide the following matrix representation of the index map:

( |

00 0 -1 0
00 0 0 -1
I;P=[11ooo
00 1 0 O
00-1 0 O
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By Theorem 5.13 we infer that there exists an e-approximation of F , and each e-approx-
imation of F shares with F an isolating neighborhood and, up to a conjugacy, an index map.

Property (ii) is a straightforward consequence of Theorem 8.6 under the assumption that
the transition matrix A of I r, is irreducible (cf. [18, Definition 10.22, Proposition 10.25]) and,
for any A-admissible periodic sequence g, condition (37) holds.We verify this assumption by
algorithmic computations. Details are presented in [32].

Finally, using the transition matrix A we compute that the topological entropy of fis
greater than In 1.2599.

10.2. Proof of Theorem 1.Phe proof runs along the lines of the proof of Theorem 1.3.
Computations result in a cubical isolating block N for F which decomposes into six disjoint
compact components N - - - » N, and a cubical weak index pair P in N with H (P4, Py) = Z7
and HY(P1, Py)=0forqg6=1. LetP' :=Pn N i fori=1,...,6(cf. Figure1.2). Then,
H'(p ], P}) has two generators, and each H (P, P,), for i 6= 1, has exactly one generator:

hELL i if i=1,

1pi piy—
MRy P = hdi ® iri=2 ... 6
With generators &}, €1, §2. .., & as a basis we have the following matrix representation of the
index map ( \
00 O O0O0O0 -1
00 O O0O0O0 -1
00 0 010 O
If)=1 00 0 001 0O
0 1 O 00O O
0 0 -1 000 O
00 1 -1 00 O

The topological entropy of e-approximation fis greater than In 1.151.

10.3. Proof of Theorem 1.4he proof again goes along the lines of the proof of Theo-
rem 1.3. We identify an isolating block N=N {UN, with N 4 "N, = &, and a weak index pair
PinN. We find thatH "(P1, P,) = Z? and HY(P4, P,) = 0 for g 6= 1. More precisely, if &', §2
are the generators of H'(P1, P,), andletP ' :=P n N i then H '(P{, P)) =hé 'ifori=1, 2.
With the generators as a basis we have the matrix representation of the index map

I} = 10

Finally, by Theorem 8.6, we obtain the existence of a 2-periodic pointin N .
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